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Abstract 
 

In this paper we study asymptotic distribution estimate of the autocovariance function 
( )tB T ,)( θ

)
 of homogeneous and isotropic vector-valued random fields ( )tP,ξ

r
. 

 
 

Different problems of the theory of automatic control, radio physics, geochemistry, the 
meteorologies result in necessity to consider stochastic functions time-dependent and a point on an 
sphere. For want of it it appears natural the suppositions about a homogeneous in time variable and 
isotropic on a space variable of random fields. The users of many statistical application software 
packages apply to an estimation of spectral characteristic of random processes and fields of statistics 
such as a smoothed periodogram, statistics such as average periodograms, that is used thes paper. 

Let ( ) nSttP ∈,,ξ
r

 a homogeneous on time variable and isotropic on a space variable column 
vector-valued random field with components ( ) ratPa ,...,1,, =ξ on  ZSn × , where −nS  is the unit 

sphere of the n -rd dimensional space nR  and ,...1,0 ±=Z , which has finite second order moment 

and which for each t  is continuous in quadratic mean (q.m.) . −= µµξ ,),( tPE
r

 unknown. 
),(]),(][),([ tBsQstPE θµξµξ =−−+

rr
, where θ - is the angular distance between Ρ иQ . 

It is known that  ( )tP,ξ
r

 can be represented as (see Yadrenko  (!983),) Korolyuk(1985)) 
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where the ( )Sm
l Ρ  are the orthonormal spherical harmonics of degree m, 
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is the number of linearly independent spherical harmonics of degree m, 

),()()( ,
)(111

1
λδδξξ

π

π

λ
mba

stil
l

m
m

l
mb

l
ma FdestE ∫

−

−=  

and }0),({ ≥mFm λ
r

 is a sequence of real nondecreasing function such that 
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l
kδ  being the Kronecker delta. 

The autocovariance matrix function B t( , )θ can be written as 
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where ω πn

n n= 2 2
2 / ( )Γ is the area  of the surface Sn  and the C xm

υ υ( ),( )≠ 0  are the 

Gegenbauer  polynomials.(see Beteman H.,Erdelyi A.(1953) ) 
We shall assume that ( )tP ,ξ

r is stationary in time and homogeneous and isotropic in space 
in the strict sense, i.e. for any finite sequence of points ( , ),...,( , )Ρ Ρ1 1t tk k  the distribution of 
( ) ( )ttgttg kk +Ρ⋅⋅⋅+Ρ ),(,),( 11 ξξ

rr
 does not depend on g  and t  for all g G∈  and  t kk , , ,...= 1 2 where 

G  is the group of rotations of Rn about the origin. 
The following conditions let are executed:  
For each t  ( ) }:,{ nSPtP ∈ξ

r is continuous in q.m. 
Let ( ) ( ) ),...,(,, 111 kkkk ttmtt ≤Ρ⋅⋅⋅ΡΕ ξξ

rr
 uniformly in Ρ Ρ1 ,..., k  for all t t kk1 1 2,..., ; , ,....=   

For )...,( ,21 kxxx we  denote its joint cumulant of order k  by cum x xk( ,..., )1 .  
Condition B. For a given q ≥ 0  
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uniformly in P P Pk1 2, ,..., for j k= −1 2 1, ,..., and k = 2 3, ,....  
This condition is analogous to the one made by Brillinger (1969,1970). 

Let field ( )tP ,ξ
r

 is observed for all points of  Sn  and on time 1,...,1,0 −= Tt . 
For any lwe define  
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The periodogram  
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is an asymptotically unbiased estimator of the spectral density )(, λmba f The * - denotes line-
vector. This estimate is not consistent. In order to construct a consistent estimator we consider a 
bounded even function H ( ),α π α π− ≤ ≤ , that has a bounded derivative and such that  

H d( )α α
π
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For a sequence of positive numbers AT  we set )()( 11)( αα −−= TT
T AHAH .We define an 

estimator for the spectral density in the following manner: 
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As an estimate of the autocovariance function  of a random field the following statistics is 
considered: 
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∞→T , ],0[ πθ ∈ . 
We assume that second-order cumulant spectra of ( )tP,ξ

r
 satisfy 
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 Theorem: Under the above assumptions the estimate ( )tB T ,)( θ
)

 is 
asymptotically unbiased and asymptotically consistent. 
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